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Abstract. The equations for multiple-trapping transport under conditions of pulse injection 
have been solved for a macroscopically non-homogeneous spatial trap distribution (STD). 
Since the influence of the STD on transient currents is the main point of interest, we deal only 
with two model energetic trap distributions-monoenergetic for non-dispersive transport, 
and exponential for dispersive transport. The expressions for transient currents obtained 
are discussed with respect of their utility in determining STD on the basis of experimental 
transients. Analytically calculated transient currents agree perfectlywith the results obtained 
from the Monte Carlo simulation of these transients. 

1. Introduction 

The time-dependent equations for multiple-trapping transport under conditions of pulse 
injection into thin insulating layers have been successfully discussed in many papers 
(Zanio etall968, Teft 1967, Schmidlin 1977, Noolandi 1977, Scher and Montrolll975, 
Arkchipov and Rudenko 1982, Rudenko and Arkchipov 1982a, b, Tomaszewicz and 
Jachym 1984). In all the previous research in the field only a homogeneous spatial trap 
distribution (STD) has been assumed. Such an assumption essentially simplifies the 
resulting formulae for transient currents but corresponds, however, to a very idealised 
situation. Spatial non-homogeneity of the trap distribution in a layer may arise from 
diffusion of atoms from contacts or ambient atmosphere, or from chemical reactions. In 
the case of very thin layers the region of trap non-homogeneity may be comparable with 
the layer thickness, so that the near-contact non-homogeneity may not be included into 
contact properties and should result in distinct discrepancies of the measured current- 
time characteristics from theoretical results obtained for a homogeneous STD. 

In the present paper we solve multiple-trapping transport equations for small-signal 
pulse injection in insulating layers with a spatially non-homogeneous trap distribution. 
Depending on the energetic trap distribution, either dispersive or non-dispersive trans- 
port occurs. Because we are interested in the influence of the STD on transient currents, 
we deal only with two model energetic trap distributions: monoenergetic, to illustrate the 
influence of STD non-homogeneity on non-dispersive transients (0 2); and exponential, to 
illustrate the influence of such non-homogeneity on dispersive transients (§ 3). In both 
cases we propose methods of determining the STD from experimental current-time 
characteristics. Section 4 contains concluding remarks. 
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2. Non-dispersive transport 

In the case of small-signal monopolar injection into a thin insulating layer, the continuity 
equations for concentrations of the free charge n(x, t )  and the trapped charge nt(x, t ) ,  
assuming multiple-trapping band transport, may be written as follows: 

dn(x ,  t ) / a t  = - pE(an(x,  t)/ax) - ant(& t ) /at  (1) 

dnt(x7 t>/at  = n(x, t) /r(x) - n t ( X ,  t)/rd (2) 

n(x, 0) = no@) (3) 

n , ( x ,  0) = 0 (4) 

with initial conditions 

where p is the microscopic mobility; E is the electric field ( E  = const); r(x) = 
[N,$(x)apE]-' is the x-dependent average trapping time; S(x) is the shape function of 
the trap distribution; NoS(x) is the trap concentration in x; a = south/@ is the effective 
trapping cross section; a is the trapping cross section; Uth  is the thermal velocity; r d  is 
the average detrapping time; no is the surface density of initially generated carriers; 6 ( x )  
is the Dirac function; t 2 0; and 0 S x 6 L,  where L is the layer thickness. In equation 
(1) the diffusion term has been neglected, and in equation (2) a low trap occupation has 
been assumed. Equations (1)-(4) may be solved with the aid of Laplace transform 
technique (Appendix 1). The expression for n(x ,  t )  obtained reads 

n(x, t )  = 2 [ s(t - ;) + @( t - ;) 
PE 

where 

and 

Here 0 is the unit step function, and Zl is the hyperbolic Bessel function of the first order. 
Equation (5) generalises the corresponding result of Zanio er a1 (1968) to the case 
of macroscopically non-homogeneous STD. Expression (5) integrated over the layer 
thickness gives the time-dependent current j ( t )  induced in the external circuit: 

L 
j ( t )  = q p E  1 n(x ,  t )  dx/L. 

0 
(9) 

Equations (5)-(9) allow one to calculate numerically transient currents for any given 
S ( x ) .  As far as determination of the STD in a given layer from experimental transients is 
concerned, one could at least assume a priori a certain functional shape of S ( x )  in the 
form of a one- or two-parameter family of functions and determine the concrete values 
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of these by fitting experimental data to theoretical currents. However, in two limiting 
cases of shallow and deep traps very simple expressions for transient currents may be 
obtained, enabling us to determine the STD immediately from experimental charac- 
teristics. 

1 (Appendix l), n(x ,  t )  
is described by a b-like packet of carriers: 

In the case of shallow trapping, which corresponds to S t d  

n(x,t) = (nO/pE)b{t- (l/CIE)[x+NOS(x)zdaCIE]} (10) 

j ( t )  =j(){1 + N()S[x*(f)]zdCJPE}-'. (11) 

and thus 

In equations (10) and (11) j o  = nopEq/L, and x*(t)  is the actual position of the carrier 
packet. So x * ( t )  is the solution of the equation 

X + N()L?(x)tdOpE = pEt. (12) 

From equation (11) we get an expression suitable for the determination of the STD, 
provided j ( t )  has been measured: 

NOS[x*(t)l = [ j O  - j(t>l/j(t>tdCJpE. (13) 

Equation (13) gives the trap concentration at a distancex*(t) from the injecting contact, 
that is in the actual position of drifting wall of carriers. However, x * ( t )  may be immedi- 
ately related to the absolute time-independent coordinate x. In particular, the charge 
Q(t) induced on a unit surface of contact up to the moment t amounts to (Ramo 1939) 

Q(t> = noqx*(t)/L (14) 

which correlates time t to the actual position x * ( t )  of drifting carriers. Thus having 
measured Q(t) the right-hand side of equation (13) equals the trap density inx = LQ(t) /  
qno. If CJ and/or t d  is not known, equations (13) and (14) allow one to determine only 
the shape function S ( x )  normalised to 1 in x = 0 and the product Noatd. Figures 1-3 
illustrate transient currents in the case of shallow trapping for several shape functions 
S(x) : 

S(x) = exp(-x/D) (15) 

S(x) = exp[-(L - x)/D] (16) 

S(x) = exp(-x/D,) + exp[-(L - x)/D2] (17) 

S(x) = exp[-(x - ~ 5 / 2 ) ~ / D ~ ]  (18) 

of various degrees of STD non-homogeneity. D ,  D ,  and D2  in equations (15)-(18) are 
parameters. The full curves in figures 1-3 have been obtained by numerical integration 
of the expressions (5)-(9): the broken curves correspond to equation (11) together with 
(12), the latter being solved numerically. The points in figures 1-3 represent the results 
of Monte Carlo simulation of corresponding transients according to the well known 
algorithm, proposed originally by Silver et al (1970), here, however, generalised by 
allowing the average trapping time z (x)  to depend on x .  As is easily seen, in spite of the 
rather crude approximation made to get (10) (Appendix l ) ,  transients given by (11) 
agree perfectly with both the exact solutions of the transport equations and the Monte 
Carlo simulation up to the moment when the fastest carriers reachx = L. Thus equations 



4626 J Rybicki and M Chybicki 

2 

- 
0 - 

E 
0 .c 

2 1  
x - 
’Y 

0 
t / f ,  

Figure 1. Shallow trapping transient currents for different degrees of non-homogeneity 
LID in STDS (15) and (16): A-D, S(x) = exp(-x/D), LID = 0 (A), 0.5 (B), 2.0 (C), 
5.0 (D); E, F, S(x) = exp[-(L - x)/D], LID = 2.0 (E), 5.0 (F). z0 = 0.002t0 (to = L / p E ) ,  
zd = 2.71to. The meaning of the curves and points is described in the text. 

0 1 2 
t / t ,  

Figure 2. Shallow trapping transient currents for different degrees of non-homogeneity 
LID in STDS (17) and (18): A, B, S(x)  = exp(-x/D,) + exp[-(L - x)/Dz], LID, = 
L/Dz = 3.0 (A), 5.0 (B); C, D, S(x )  = exp[-(x - L/2)’/DZ], L2/D2 = 4.0 (C), 12.0 (D). 
z0 = 0.002to (to = L/pE), td = 2 . 7 1 ~ ~ .  The meaning of the curves and points is described in 
the text. 
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Figure 3. Transient currents for different degrees of non-homogeneity LID in STDS (15) and 
(16): A-C, S(x )  = exp(-x/D), L I D  = 0 (A), 2.0 (B), 5.0 (C); D, E, S(x)  = exp[-(L - x ) /  
D ] ,  L ID = 2.0(D),S.O(E). so = 0.01t0, td = to ( to  = L/pE) .  Themeaningofthecurvesand 
points is described in the text. 

(13) and (14) make it possible to determine STD from experimental current-time charac- 
teristics in the range 0 s x s L - w ,  w approximately being the width of the Gaussian 
packet of drifting carriers. 

In the case of deep trapping (szd % l ) ,  for t 6 to, where to is the trap-free time of 
flight, one gets (Appendix 1) 

n(x,  4 = exp[- W / P E % l W  - x/PE) (19) 

At) = j o  exP[- S(PEt)/PE%l. (20) 

N,S(pEt) = - [ l / ~ p E j ( t ) ]  dj(t)/dt (21) 

and thus 

Equation (20) may be used for immediate determination of the STD: 

provided (T and ,U are known. 
Equations (13), (14) and (21) allow determination of the STD from experimental data 

only in two limiting cases of shallow and deep traps, respectively. No simple equation, 
suitable for determination of the STD in the intermediate region (zd = t = to) ,  has been 
found. However, traps may be made effectively shallower or deeper at higher or lower 
temperatures, respectively. Thus it seems that the simplified expressions (13), (14) and 
(21) presented above could make STD estimation possible for a relatively wide class of 
materials. 
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3. Dispersive transport 

In the case of dispersive transport the continuity equations to be solved are (1) and (cf. 
(2)) 

with the initial conditions (3) and (4), where n: ( x ,  t ,  8) is the density of the carriers 
trapped in the depth interval (8, 8 + d%), 8 being measured down from the upper edge 
% o  of the energetic trap distribution;f(%) is the energetic trap distribution, here assumed 
to be 

where k is the Boltzmann constant, T, is the characteristic temperature, C(%) is the 
carrier capture coefficient, r d ( 8 )  = l / ~ ( % ~ )  exp(%/kT) is the mean detrapping time 
from the energetic level Z0, U(%,) = v o  exp(%o/kTc) is the effective frequency factor, 
v o  is the frequency factor and Tis temperature. 

Following the considerations of Tomaszewicz and Jachym (1984), extended, 
however, by the change of variables x' = NoS(x) /pE and &(x, t )  = n,(x, t ) /NoS(x) ,  the 
carrier concentration in the conduction band may be expressed by the following approxi- 
mate formula: 

where 

@(t) = jm C(%)Nof(%) exp[-t/zd(%)] d%. (25) 
0 

Equations (24) and (25) together with (9) suffice to calculate transient currents. Accord- 
ing to the approximations described precisely by Tomaszewicz and Jachym (1984), 
equation (24) is valid for highly dispersive transport. Exact solution of equations (1) and 
(22) may be obtained formally with the aid of the Laplace transform technique. In 
particular, from (1) and (22) one gets the following expression for the time transform 
ri(x, s) of the free carrier concentration n(x ,  t )  (Appendix 2): 

f i (x, s) = (no/PE) exp{--(s" + S ( 4 W l > @ ( x >  (26) 

where @(s) is the Laplace transform of (25), for the exponential energetic trap distri- 
bution (23) given by 

1 u"-l d u  
@(s) = - 

1 + vu/s 

where U = exp(-%/kT), a = T/T, and C has been assumed to be constant. Numerical 
calculation ofj(t) consists of evaluation of (27), inversion of (26) and inserting the result 
into (9). The first of these steps may be performed to some extent analytically. In 
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particular, if 1/a is an integer, the substitutions w = vu/s and z = w n  in equation (27) 
yield 

which contains the known integral (e.g. Ryzyk and Gradsztejn 1964): 

for odd integers, and 

for even integers, where 

and 

sin[(2k + l)n/m] 
z - cos[(2k + l )n/m] 

Qk = tan-'( 

On the other hand, for any real a from the interval (0, l), in the limit of large times 
(small s), @(s) may be approximated by 

where y = exp(%) = 1.786, % is the Euler constant, and r is the Euler function. The 
development of (33) consists of application of (23) to equations (B5) and (B6) of 
Tomaszewicz and Jachym (1984) and calculating the Laplace transform 2 using the well 
knownformula2[tr] = r ( r  + l ) /s '+l ,Rer  > -1. Infigure4wecomparetheanalytically 
calculated dispersive transients with our previous Monte Carlo results (Rybicki and 
Chybicki 1988). As expected, the currents calculated from (9) and the approximate 
solution (24) and (25) agree with the simulation results (treated here as the exact 
transients) for small a (a < 0.33). The numerically obtained current-time characteristics 
agree with the simulation results for all a. 

As argued in Rybicki and Chybicki (1988), the shape of the transient multiple- 
trapping currents are not very sensitive to the actual shape of the STD, particularly in the 
case of highly dispersive transport. Practically, transient currents depend only on the 
STD in the region close to the injecting contact, where the drifting packet of carriers is 
relatively mobile. Thus, as far as the estimation of the STD shape on the basis of transient 
currents is concerned, some simple, approximate formulae describing initial portions of 
transients should be useful. With the aid of the saddle-point method, the small-time 
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Figure 4. Theoretical dispersive transients compared to Monte Carlo simulation results. 
S ( x )  = exp(-x/D), LID = 5.0, C = m3 s-' for: (A) (Y = 0.5, v = 5 x lo3 s-l; (B) CY = 
0.33; (C) a = 0.2, v = lo5 s- ' .  Points, Monte Carlo simulation; full curves, equations (9), 
(26)-(32); broken curves, equations (9), (26) and (33); chain curves, equations (9), (24) and 
(25 ) .  

expressions forj(t) may be obtained from (9) and (24). For S(x )  given by equation (15) 
one gets (Appendix 3) 

j ( t )  = - [qnopE(2n)'/2/Le][dln@(t)/dt][@(t) -pE/D]- '  (34) 
e = 2.71. The corresponding formula for the STD (16) may be immediately written by 
substituting -D  in place of D in (34) and No exp( - L I D )  in place of No in (25).  The 
formula for STD (17) with D1 = D2 = D reads 

4no(2n)1 /2  d In @(t) 
j ( t )  = - 

L e  d t  

Equation (35) for L I D  < 1 and L / D  *l reduces to the homogeneous STD expression 
with trap concentration 2No,  and to equation (34) ,  respectively. The approximate 
formulae (34) and (35) for STDS (15)-( 17) agree with the exact solutions in the time range 
from several to about lo2 trap-free times of flight. On inspection, they account for the 
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qualitative dependence of transients on the STD non-homogeneity, presented in Rybicki 
andChybicki(1988). Equation(34) may beusedfortheestimationofthe trapdistribution 
parameters in the near-contact region from experimental data, the STD being approxi- 
mated by (U) ,  provided O ( t )  (dependent on C ,  v and the energetic trap distribution) is 
known for the material considered. 

4. Concluding remarks 

In the present paper we have formally generalised the well known simple analytical 
description of multiple-trapping transient currents to the case of layers with a spatially 
non-homogeneous trap distribution, for both non-dispersive and dispersive transport. 
It has been demonstrated that the spatial non-homogeneity in the trap distribution may 
lead to essential deviations from transients expected for homogeneous layers. Although 
the solutions of the transport equations are rather complicated, and require some 
numerical work to calculate transient currents, some approximate formulae may be 
given. These are suitable for determining the spatial trap distribution over almost all the 
layer thickness in the non-dispersive case, and estimating it in the near-contact region 
in the case of dispersive transport. 

Transients similar to those of figures 1-4, when obtained in experiments, may be 
explained within the framework of spatial non-homogeneity of a layer not only by 
assuming spatial variations of the trap concentration, but also in at least two other ways. 
In particular, it is easy to determine the spatial variations of depths of traps with 
x-independent concentration, which lead to transients identical to those obtained for 
constant-depth traps of x-dependent concentration. One can also easily find a constant 
in-built electrical field, which would modify the local drift velocity in such a way that 
the transient pulse assumes exactly the same shape as shown in the present work. 
Corresponding formulae, and analysis of the unambiguity of the experimental data 
interpretation in terms of the layer non-homogeneity , will be presented in a forthcoming 
paper. 
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Appendix 1 

We shall solve here equations (1)-(4) with the aid of the Laplace transform technique. 
Time Laplace transforms of equations (1) and (2), together with initial conditions 

(3) and (4), are as follows: 

pE(afi(x, s)/ax) + sfi(x, s) + SA,(X, s) = no&) 

At(X, s) = [l/z(x)](s + 1/qj)-lYi(x, s). 

(Al . l )  

(A1.2) 
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Substituting Izr(x, s) from (A1.2) into (Al.1) and integrating the latter with respect to x 
one gets 

J Rybicki and M Chybicki 

(A1.3) 

where s ( x )  and zo are given by (9) and (7), respectively. 
The problem is now reduced to finding the inverse Laplace transforms of (A1.3) and 

(A1.4). Because we are interested in the s-dependence of (A1.3) and (A1.4), we shall 
introduce the following notation: A = x / p E ,  B = S(x) /pEro ,  a = no/@E and p = 1/rd. 
Now we have 

f i ( x ,  s) = a e-As exp[- ~ s / ( s  + P)]  

f i t (x,s)  = [a/z(x)][l/(s +/?)I e-As exp[ - Bs/(s + p) ] .  

(A1.5) 

(A1.6) 

Let us consider (A1.5): for R e s  > - p, which is fulfilled in our case, we have 

Term-by-term inversion yields 

x e-P(r-A)O(t - A). (A1.7) 

Keeping in mind that hyperbolic Bessel functions of order U ,  I,, are defined as 

(A1.8) 

and I'(k + 1) = k ! ,  the last sum in (A1.7), after some simple algebraic rearrangements, 
may be written as 

(Bt - B A ) - ~ / * I ~ [ ~ ~ ~ / ~ ( B ~  - BA)'/*] t > A .  

Finally, substituting the last expression into (Al.7) and decoding A ,  B ,  a and P we obtain 
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equations ( 5 )  and (6) of the main text. Proceeding almost identically, the expression for 
n,(x,  s) may be found: 

(A1.9) 

where E ,  zo and s ( x )  are given by (6)-(8). 

rewritten as 
In the limiting cases of shdlow (szd =e 1) and deep (Std B 1) trapping, (A1.3) may be 

no f i (x,  s) = - exp 
PE 

and 

(Al.  10) 

(Al.11) 

respectively, which immediately yield (10) and (19). Performing integration in (9) with 
the aid of a theorem on change of variables in &functions, one gets ( l l ) ,  (12) and (20). 

Appendix 2 

Equation (26) may be developed as follows. Taking the Laplace transform of (22) one 
gets 

(A2.1) 
which on integration with respect to 8 gives 

(A2.2) 

fii(x9 s, %) = {c(g)NOs(x>f(%)/[s  + l /zd(%>l>ri(x? s, 

f i ,(x, s) = O(s)S(x)fi(x, s) 

(A2.3) 

As easily seen, (A2.3) is the Laplace transform of (25). Substituting (A2.2) into (Al . l )  
and solving the resulting equation one gets (26). 

Appendix 3 

Substitution of (24) into (9) and assuming C and Y to be %-independent one gets 

j(t) = - -- ‘Io d::t) loL ex~[-A(x)O(t)]A(x) dx (A3.1) 

where O(t) is given by (25) and A(x) for the STD (15) reads 
(A3.2) 

Introducing the function F(x, t) = In A(x) - A(x)O(t), equation (A3.1) may be rewrit- 
ten as 

A(x) = (D/pE)[l - exp(-x/D)]. 

j ( t )  = - ‘:’ :Lt) loL exp[F(x, t)]  dx,  (A3.3) 

For small times F(x,  t) assumes a sharp maximum at the point 
x*(t) = - D ln[l - pE/D@(t)] (A3.4) 

and may be approximated by 
F(x,t) F(x*(t), t) + $[x - x*(t)]’ d2F(x*(t), t)/dx. (A3.5) 

Thus evaluation of (A3.3) consists of integration of the Gaussian function (A3.5), which 
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after changing the integration limits from (0, L )  to (-CO, +a) leads immediately to 
equation (34) of the main text. In a similar way equation (35) may be obtained. 
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